BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination

$\square 17 \square 2$

June, 2017

PHYSICS

PHE-11 : MODERN PHYSICS

Time: 2 hours Maximum Marks : 50

Note: Attempt all questions. The marks for each question are indicated against it. The values of physical constants are given at the end. Symbols have their usual meanings.

1. Answer any five parts :
$5 \times 3=15$
(a) The ayerage lifetime of a π-meson at rest is 26 ns . The meson is moving with a speed of 0.9 c with respect to the Earth. Calculate its lifetime as measured by an observer at rest on the Earth.
(b) Show that in the limit $v \ll \mathrm{c}$, the expression for the relativistic kinetic energy approaches the classical kinetic energy.
(c) Write down the probabilistic interpretation of the wave function.
(d) The lifetime of an excited state is 8 ns . If this is the uncertainty in photon emission, calculate the uncertainty in the frequency (Δv).
(e) Draw approximate energy levels for the L and K shells and show all the allowed transitions.
(f) State whether or not the following reactions are allowed:
(i) $\mathbf{n} \rightarrow \mathbf{p}+\mathbf{e}+\bar{v}_{\mathrm{e}}$
(ii) $\bar{\lambda}_{0} \rightarrow \mathrm{p}+\pi^{-}$
(g) List three applications of radioisotopes as tracers.
(h) The mean life of a radioactive element is 14 months. Calculate the time required for 75% of the element to decay.
2. Answer any one part :

$$
1 \times 10=10
$$

(a) (i) A particle moves with a uniform velocity \vec{v} relative to the S-frame. Derive an expression for its velocity relative to a frame S^{\prime} which is moving with a uniform velocity $V \hat{i}$ relative to the S -frame.
(ii) A person on the moon observes two spaceships moving towards him from opposite directions at speeds of 0.7 c and 0.8 c , respectively. Calculate the relative speed of the two spaceships as measured by an observer on either one. $6+4$
(b) (i) Using the expression for the relativistic linear momentum of a particle and the mass-energy equivalence, derive an expression relating the energy and momentum of a relativistic free particle.
(ii) Calculate the potential difference through which a proton must be accelerated to achieve a speed of 0.6 c . (Rest mass of the proton is 938 MeV) $6+4$
3. Answer any two parts: $2 \times 5=10$
(a) In a region of space, a particle with mass m and zero energy has a time independent wave function :

$$
\Psi(x)=A X^{-x^{2} / L^{2}}
$$

where A and L are constants. Use the Schrödinger equation to determine the potential energy of the particle.
(b) A photon and an electron each have an energy of $6.0 \times 10^{3} \mathrm{eV}$. Calculate their respective wavelengths. Which of these could be used to probe atomic structures? Explain.
(c) Prove the Ehrenfest theorem for the position operator :

$$
\frac{\mathrm{d}\langle\mathrm{x}\rangle}{\mathrm{dt}}=\frac{1}{\mathrm{~m}}\left\langle\mathrm{p}_{\mathrm{x}}\right\rangle
$$

4. Answer any one part:

$$
1 \times 10=10
$$

(a) Write down the Schrödinger equation for a one-dimensional harmonic oscillator with an angular frequency ω. Calculate the mean potential energy of a simple harmonic oscillator in its ground state :

$$
\begin{aligned}
& \Psi_{0}(x)=\left(\frac{a}{\sqrt{\pi}}\right)^{1 / 2} \exp \left(\frac{-a^{2} \mathbf{x}^{2}}{2}\right) \\
& \text { where } \mathbf{a}^{2}=\frac{\mathrm{m} \omega}{\hbar} .
\end{aligned}
$$

What is the energy eigenvalue of the ground state? Is the ground state of even parity or odd parity?

$$
2+6+1+1
$$

(b) (i) Write down the time independent Schrödinger equation for the hydrogen atom. Explain the significance of the three quantum numbers in the eigenfunctions of the hydrogen atom. $2+3$
(ii) State with reasons whether the following transitions for a multi-electron atom are allowed or not: 5

1. ${ }^{3} \mathrm{P}_{0} \rightarrow{ }^{3} \mathrm{~S}_{1}$
2. ${ }^{1} \mathrm{~S}_{1 / 2} \rightarrow{ }^{1} \mathrm{D}_{3 / 2}$
3. Answer any one part :
(a) Sketch the binding energy/nucleon as a function of the mass number. How can it be used to explain the fission and fusion phenomena? $3+2$
(b) With the help of a diagram, explain the working of a cyclotron.

Physical Constants:

$$
\begin{aligned}
& \mathrm{h}=6.62 \times 10^{-34} \mathrm{Js} \\
& \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}
\end{aligned}
$$

