BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination
 December, 2015

PHYSICS
 PHE-11 : MODERN PHYSICS

Time : 2 hours
Maximum Marks : 50
Note : Attempt all questions. The marks for each question are indicated against it. Symbols have their usual meanings. You may use non-programmable calculators or log tables. The values of physical constants are given at the end.

1. Answer any five parts :
(a) Calculate the kinetic energy of an electron moving with a velocity of 0.999 c in the laboratory system where c is the velocity of light.
(b) Calculate the de Broglie wavelength of a 100 MeV electron.
(c) Calculate the minimum uncertainty in the momentum of a proton confined to a nucleus of radius $10^{-14} \mathrm{~m}$. Also calculate the minimum kinetic energy of the proton.
(d) Obtain the most probable value of \mathbf{r} for the ground state of a hydrogen atom for which the wave function is

$$
\psi(\mathrm{r})=\frac{2}{\left(\mathrm{a}_{0}^{3}\right)^{1 / 2}} \mathrm{e}^{-\mathrm{r} / \mathrm{a}_{0}} .
$$

(e) List all the spectral terms of a hydrogen-like atom in $n=3$ state.
(f) The half-life of a radioactive element is 26 days. Calculate the time required for 25% of the element to decay.
(g) Explain whether the following reactions are possible:
(i) $\quad \lambda^{0}+\Sigma^{+} \subset \mathrm{p}+\mathrm{n}+\mathrm{e}^{-}+\overline{y_{\mathrm{e}}}$
(ii) $\mathrm{h}=\mathrm{p}+\mathrm{e}+\overline{\mathrm{y}} \mathrm{e}$
2. Answer any one part :
(a) An electron is moving with a speed of 0.85 c in a direction opposite to that of a photon. Calculate the relative velocity of the photon with respect to the electron.
(b) A pion at rest decays into a muon and a neutrino (zero rest mass). Using the relativistic law of conservation of energy and momentum obtain the momentum of muon in terms of m_{π} and m_{μ}.
3. Answer any one part :
(a) (i) Write the time-dependent Schrödinger equation and deduce the time-independent Schrödinger equation. 5
(ii) Obtain the value of the commutator $\left[\mathrm{L}_{\mathrm{x}}, \mathrm{L}_{\mathrm{y}}\right]$.
(b) (i) State the properties of wave function. 5
(ii) The wave function of a particle confined in a length $0<x<L$ is

$$
\psi(x)=A \sin \frac{n \pi x}{L} .
$$

Obtain the normalisation constant.
4. Answer any one part :
(a) Give the selection rules for atomic transitions that yield a characteristic X-ray spectrum. Draw the approximate energy levels for the L and M shells and show all the allowed transitions. Use Moseley's law to obtain the frequency of an X-ray line when an L to K transition takes place in an Ag atom for $\sigma=3$.
(b) Write down the time-independent Schrödinger equation for a one-dimensional harmonic oscillator which has an angular frequency ω. Also calculate the mean kinetic energy and potential energy of the oscillator in the ground state given by the wave function

$$
\begin{align*}
& \psi(x)=\left(\frac{a}{\pi}\right)^{1 / 2} \exp \left(\frac{-a^{2} x^{2}}{2}\right), \\
& \text { where } a=\frac{m \omega}{\hbar} . \tag{10}
\end{align*}
$$

5. Answer any one part :
(a) Define mass defect and binding energy. The energy released when two ${ }_{1}^{2} \mathrm{H}$ nuclei fuse together to form ${ }_{2}^{4} \mathrm{He}$ nucleus is 23.6 MeV . Given that the binding energy per nucleon in ${ }_{1}^{2} \mathrm{H}$ is 1.1 MeV , calculate the binding energy per nucleon for ${ }_{2}^{4} \mathrm{He}$.
(b) Explain the working of Wilson cloud chamber.

Physical Constants

$$
\begin{aligned}
& \mathrm{h}=6.6 \times 10^{-34} \mathrm{Js} \\
& \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}
\end{aligned}
$$

PHE-11

